Littlewood-paley Theorem for Schrödinger Operators
نویسنده
چکیده
Let H be a Schrödinger operator on R. Under a polynomial decay condition for the kernel of its spectral operator, we show that the Besov spaces and Triebel-Lizorkin spaces associated with H are well defined. We further give a Littlewood-Paley characterization of Lp spaces as well as Sobolev spaces in terms of dyadic functions of H . This generalizes and strengthens the previous result when the heat kernel of H satisfies certain upper Gaussian bound.
منابع مشابه
Besov Spaces for Schrödinger Operators with Barrier Potentials
Let H = −△ + V be a Schrödinger operator on the real line, where V = εχ[−1,1]. We define the Besov spaces for H by developing the associated Littlewood-Paley theory. This theory depends on the decay estimates of the spectral operator φj(H) in the high and low energies. We also prove a Mikhlin-Hörmander type multiplier theorem on these spaces, including the L boundedness result. Our approach has...
متن کاملSpectral Multipliers for Schrödinger Operators with Pöschl-teller Potential
Spectral multiplier theorem for differential operators plays a significant role in harmonic analysis and PDEs. It is closely related to the study of the associated function spaces and Littlewood-Paley theory. Let H = −∆ + V be a Schrödinger operator on R, where V is real-valued. Spectral multipliers for H have been considered in [22, 16, 14, 15, 3] and [12] for positive potentials. The case of ...
متن کاملLittlewood-Paley Operators on Morrey Spaces with Variable Exponent
By applying the vector-valued inequalities for the Littlewood-Paley operators and their commutators on Lebesgue spaces with variable exponent, the boundedness of the Littlewood-Paley operators, including the Lusin area integrals, the Littlewood-Paley g-functions and g μ *-functions, and their commutators generated by BMO functions, is obtained on the Morrey spaces with variable exponent.
متن کاملun 2 00 0 LITTLEWOOD - PALEY THEORY AND THE T ( 1 ) THEOREM WITH NON DOUBLING MEASURES
Let μ be a Radon measure on R which may be non doubling. The only condition that μ must satisfy is μ(B(x, r)) ≤ C r, for all x ∈ R, r > 0 and for some fixed 0 < n ≤ d. In this paper, Littlewood-Paley theory for functions in L(μ) is developed. One of the main difficulties to be solved is the construction of “reasonable” approximations of the identity in order to obtain a Calderón type reproducin...
متن کاملBoundedness of Littlewood-Paley operators and their commutators on Herz-Morrey spaces with variable exponent
The aim of this paper is to establish the vector-valued inequalities for Littlewood-Paley operators, including the Lusin area integrals, the Littlewood-Paley g-functions and g∗μ-functions, and their commutators on the Herz-Morrey spaces with variable exponentMK̇ p,q(·)(R n). By applying the properties of Lp(·)(Rn) spaces and the vector-valued inequalities for Littlewood-Paley operators and their...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006